Эйлеровы интегралы - Definition. Was ist Эйлеровы интегралы
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Эйлеровы интегралы - definition

СПИСОК ОДНОИМЁННЫХ ОБЪЕКТОВ
Число Эйлера; Теорема Эйлера; Тождество Эйлера; Интеграл Эйлера; Эйлеровы интегралы; Эйлеров интеграл; Формулы Эйлера; Формула Эйлера для четырёхугольника; Список объектов, названных в честь Эйлера
  • обсерватории Ла-Силья]] ([[Чили]])
  • Золотая медаль имени Леонарда Эйлера

Эйлеровы интегралы         

интегралы вида

(1)

(Э. и. первого рода, или бета-функция, изученная Л. Эйлером в 1730-31, ранее рассматривалась И. Ньютоном и Дж. Валлисом) и

(2)

[Э. и. второго рода, или Гамма-функция, рассмотренная Л. Эйлером в 1729-30 в форме, эквивалентной формуле (2); сама формула (2) встречается у Эйлера в 1781]; название "Э. и." дано А. Лежандром. Э. и. позволяют обобщить на случай непрерывно изменяющихся аргументов биномиальные коэффициенты и факториал n!, ибо, если а и b- натуральные числа, то

, Г (а +1) = а!

Интегралы (1) и (2) абсолютно сходятся, если а и b положительны, и перестают существовать, если а и b отрицательны. Имеют место соотношения

В (a, b) = B (b, a), ;

последнее сводит бета-функцию к гамма-функции. Существует ряд соотношений между Э. и. при различных значениях аргумента, обобщающих соответствующие соотношения между биномиальными коэффициентами. Э. и. можно рассматривать и при комплексных значениях аргументов а и b. Э. и. встречаются во многих вопросах теории специальных функций (См. Специальные функции), к ним сводятся многие определённые интегралы, не выражаемые элементарно. Э. и. называется также интеграл

выражающий т. н. гипергеометрическую функцию (См. Гипергеометрические функции).

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Артин Е., Введение в теорию гамма-функций, пер. с нем., М.- Л., 1934; Уиттекер Е. Т., Ватсон Д. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.

Список объектов, названных в честь Леонарда Эйлера         
Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера».
Эллиптические интегралы         
Эллиптические интегралы

интегралы вида

,

где R (x, у) - рациональная функция х и , а Р (х) - многочлен 3-й или 4-й степени без кратных корней.

Под Э. и. первого рода понимают интеграл

(1)

под Э. и. второго рода - интеграл

где k - модуль Э. и., 0 < k < 1 (х = sin φ, t = sin α. Интегралы в левых частях равенств (1) и (2) называются Э. и. в нормальной форме Якоби, интегралы в правых частях - Э. и. в нормальной форме Лежандра. При х = 1 или φ = π/2 Э. и называются полными и обозначаются, соответственно, через

и

Своё назв. Э. и. получили в связи с задачей вычисления длины дуги эллипса и = a sin α, v = b cos α(a < b). Длина дуги эллипса выражается формулой

где - эксцентриситет эллипса. Длина дуги четверти эллипса равна E (k). Функции, обратные Э. и., называются эллиптическими функциями (См. Эллиптические функции).

Wikipedia

Список объектов, названных в честь Леонарда Эйлера

Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера».